Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer.

نویسندگان

  • Feng Geng
  • Kun Song
  • James Z Xing
  • Cunzhong Yuan
  • Shi Yan
  • Qifeng Yang
  • Jie Chen
  • Beihua Kong
چکیده

The treatment of ovarian cancer has traditionally been intractable, and required novel approaches to improve therapeutic efficiency. This paper reports that thio-glucose bound gold nanoparticles (Glu-GNPs) can be used as a sensitizer to enhance ovarian cancer radiotherapy. The human ovarian cancer cells, SK-OV-3, were treated by gold nanoparticles (GNPs) alone, irradiation alone, or GNPs in addition to irradiation. Cell uptake was assayed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), while cytotoxicity induced by radiotherapy was measured using both 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide and clonogenic assays. The presence of reactive oxygen species (ROS) was determined using CM-H2-DCFDA confocal microscopy and cell apoptosis was determined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry. The cells treated by Glu-GNPs resulted in an approximate 31% increase in nanoparticle uptake compared to naked GNPs (p < 0.005). Compared to the irradiation alone treatment, the intracellular uptake of Glu-GNPs resulted in increased inhibition of cell proliferation by 30.48% for 90 kVp and 26.88% for 6 MV irradiation. The interaction of x-ray radiation with GNPs induced elevated levels of ROS production, which is one of the mechanisms by which GNPs can enhance radiotherapy on ovarian cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanoparticles in radiation therapy: an old story yet mesmerizing

Radiotherapy (RT) is generally considered to be one of the most effective cancer treatments. The primary goal of RT is to accurately induce radiation damage to the tumor while limiting radiation toxicity to a level acceptable to normal tissue. This is accomplished by targeting the tumor with radiation. On the other hand, the status of RT procedures as they stand today is not substantial enough ...

متن کامل

A systematic review of gold nanoparticles as novel cancer therapeutics

Objective(s):The current systematic study has reviewed the therapeutic potential of gold nanoparticles as nano radiosensitizers for cancer radiation therapy.   Materials and Methods: This study was done to review nano radiosensitizers. PubMed, Ovid Medline, Science Direct, SCOPUS, ISI web of knowledge, Springer databases were searched from 2000 to September 2013 to identify appropriate studies....

متن کامل

Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles.

PURPOSE Nanotechnology is an emerging field with significant translational potential in medicine. In this study, we applied gold nanoparticles (GNP) to enhance radiation sensitivity and growth inhibition in radiation-resistant human prostate cancer cells. METHODS Gold nanoparticles (GNPs) were synthesized using HAuCl4 as the gold particle source and NaBH4 as the reductant. Either thio-glucose...

متن کامل

Evaluation of gold nanoparticles radio sensitization effect in radiation therapy of cancer: review article

In recent years, the use of gold nanoparticles (GNPs) in radiation therapy has been studied by experimentation and Monte Carlo simulation repeatedly. Although the idea of increasing doses has been raised by high-atomic elements since decades ago, but due to the adaptation of gold nanoparticles with the biological system, scientists have incited more about the various uses of these materials in ...

متن کامل

The Evaluation of Radio-sensitivity Effect of Hydroxyapatite Nanopartical on MCF-7 and Fibroblast Cell Line

Introduction: Hydroxyapatite nanoparticles inhibit the growth of various cancer cells. The inhibitory effect of these nanoparticles on breast cancer cells of mcf7 has also been reported. However, no studies have been done on the effect of the hydroxyapatite nanoparticles on the radiation sensitivities of the MCF7 cell Line. Our goal in this study is to investigate the effect of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 28  شماره 

صفحات  -

تاریخ انتشار 2011